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Oscillating Universe and Scalar Field 
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Abstract 

In order to obtain models of the homogeneous isotropic universe that can oscillate 
without going through a singular state, a cosmic field is introduced that produces a 
negative pressure, following the work of Pachner. One is led to single out a particular 
form for this field. If one adds to the Einstein field equations an expression corresponding 
to this field, taking into account the existence of a cosmic time, one obtains the C-field 
of Hoyle and Narlikar for the case of conservation of matter, 

1. Introduction 

I t  is now generally believed that  the homogeneous  isotropic expanding 
model  of  the universe, in the f ramework of  the general theory of  relativity, 
represents a fairly good approximat ion to the real universe. F r o m  the 
aesthetic point  of  view, the most  attractive model  is one which is spatially 
closed and oscillates periodically in time. For  if the universe is closed, then 
no question of  boundary  conditions arises, and if it is periodic in time, there 
is no question of  initial conditions. Of  course, we have no assurance that  
nature behaves in accordance with our  views, and ultimately the model  
chosen will be the one that gives the best agreement with observational data. 
However,  at the present time the accuracy of  the data seems to be inadequate 
to single out  a particular model. It  seems desirable therefore to hold on 
to the closed periodic model  of  the universe as long as there is no observa- 
t ional evidence against it. 

The simplest model  which is spatially closed is one having positive 
curvature. The sign of  the curvature can be taken arbitrarily in the line 
element of  general relativity and there does not  appear to be any objection 
in principle to taking it positive. To be sure, the question can be raised 
whether the sign of  the curvature is determined by more fundamental  
considerations (such as those based on Mach 's  principle, for example) but 
that  need not  concern us here. 

On  the other hand, the oscillatory behaviour of  the model  must  come out 
of  the equations o f  mot ion  for the radius o f  the universe as a function of  
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the time. Here difficulties arise. If  one considers a universe containing 
matter and radiation, characterised by density and pressure, one finds 
(Tolman, 1934) that the only possible oscillations are those for which the 
minimum value of the radius is zero, corresponding to an infinite density. 
To avoid such a singular state, Pachner (1965) assumed the existence of a 
negative pressure. Following McCrea (1951), he considered this stress as 
arising from the properties of the vacuum. Taking the stress as proportional 
to R-", he investigated the case n = 4 and showed that oscillations were 
possible for which the radius was finite and there was therefore no singular 
state. The work of Pachner represents the starting point of the present 
discussion. 

2. Cosmic FieM 

The line element of the homogeneous isotropic universe can be written 

f2  
ds 2 -  1 kr 2 \2(dxZ+dy2+dz2)+dt 2 (2.1) 

+ 4aoo') 
w h e r e f = f ( t )  > 0 is the scale factor, Ro is a constant having dimensions 
of length, k = + 1 or 0, characterises the nature of the spatial curvature, and 
r 2 = x  2 + y 2  + z  2. If  we define the radius of the universe as R=R(t ) ,  
given by 

R = R0 f ,  (2.2) 

then the Einstein field equations reduce to the following relations: 

2R R 2 k 
+ ~ = -87rp - ~ + A (2.3) 

k 2 8~r k A 
R: 3 p - ~ + 3 (2.4) 

Here A is the cosmological constant, p and p are the density and pressure, 
respectively, of the matter and radiation, and a dot denotes differentiation 
with respect to t. From equations (2.3) and (2.4) one obtains 

d(pR3)  + 3pR z = (2.5) 0 

If  p and p satisfy equation (2.5), then it is sufficient to consider equation 
(2.4) as determining R(t), and one need not make use of equation (2.3). 

Following Pachner (1965), let us now assume that space, as well as  
matter, can be characterised by quantities p and p which satisfy equation 
(2.5). Such an assumption no longer seems strange, now that we have 
learned from quantum field theory about electromagnetic field fluctuations 
and virtual particle pairs in the vacuum. It is natural to suppose that p and 
p are proportional, 

p = aO (~ = const.) (2.6) 
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Substituting this relation into equation (2.5) one finds that 

p = AR-" (2.7) 

where A is an arbitrary constant and 

n = 3(1 + a) (2.8) 

In Table 1 are given some values of a in the range ( -1 ,+1)  and the 
corresponding values of n. In the right-hand column there is a description 
of some of the corresponding fields. One sees several familiar cases included, 

TABLE 1 

n Description of field 

- 1  0 Cosmological constant 
2 l 

3 
1 2 Curvature 
0 3 Dust 
1 4 Radiation 
2 5 
3 
1 6 Cosmic field 

such as the density of dust (n = 3) and of radiation (n = 4). One can consider 
the cosmological constant appearing in equation (2.4) as a kind of field, 
corresponding to n = 0, as was pointed out by Pachner. We also see that 
for n = 2 we get what might be called a curvature field, corresponding to 
the second term in the right-hand member of equation (2.4). 

However, the most interesting case in Table 1 is perhaps that for a = 1, 
n = 6. This is the case for which dp/dp = 1. I f  we had a material medium 
for which this relation held, acoustic waves would be transmitted through 
it with the speed of light. Hence this represents a limiting case and appears 
to have special significance. Let us write this 

3 C  2 
Pc = P c -  8~rR 6 ( C =  const.) (2.9) 

and let us refer to it as the cosmic field. The negative sign has been introduced 
in equation (2.9) in order to get the negative pressure that Pachner found 
to be needed in order to avoid the singular state. I t  appears therefore that 
pc should not be regarded as an actual mass density. Rather, like the 
curvature term and the cosmological constant, it should be considered 
simply as a term appearing in the equation of motion of R, equation (2.4), 
it being associated with the properties of space. Later we shall see how the 
corresponding field appears in the Einstein field equations. 
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Taking Pc into account, we can now write in place of equation (2.4) 

/~2 C 2 87rp k A 
~R 2 --  -R 6 ~ 3 R 2 -~ 3 (2.10) 

I f  we consider p as describing the density of matter and radiation, so that 
as R ~ 0, p ~ R -4, and as R -+ % p ~ R -3, then we see that this equation 
permits oscillations without a singular state. For if  we suppose that there 
is a domain of values of R for which p is sufficiently large to make the 
right-hand member  of  equation (2.10) positive, then by going to smaller 
values of  R one must reach a finite value R1 for which this member  vanishes. 
This value RI, will be the minimum value of R, corresponding to a non- 
singular state. I f  we assume that k = 1, A = 0, then by going to larger values 
of  R we must again reach a value, R2, for which this member vanishes, and 
this is the maximum value of R. From the form of equation (2.10), it 
follows that R will oscillate periodically between RI and R2. 

We see that for k = 1, corresponding to a closed universe, the cosmo- 
logical constant is not required for oscillations to take place, and for the 
sake of simplicity one would like to omit it. However, if  we regard the 
A-term as corresponding to a kind of vacuum field, according to Table 1, 
it is possible that this term is needed for a satisfactory description of nature. 
For  A < 0, one obtains oscillations even if k = 0 or k = -1 .  However, if 
A > 0, then oscillations will occur only for k = 1, and then only provided 
A is not too large. 

As to the order of  magnitude of the first term on  the right-hand side of  
equation (2.10), one can say that in the distant past, when the radius of  
the universe was near its minimum value, this term was large and com- 
parable to the density term. At the present time, when the radius is very 
much larger, one can expect this term to be relatively unimportant. 

3. Examples 

Let us consider first a very simple, if unrealistic, example. This is the 
case in which k = 0, A < 0, and the matter consists of dust, so that one 
can write 

87rp _ 2A 2 
3 R 3 (A = const.) (3.1) 

I f  we also write A = -�89 2, equation (2.10) takes the form 

X~2 C2  2A2 1 2 (3.2) 
- - ~  + R 3  - >o 

This can be easily solved by taking as a new variable y = R 3. I f  the condition 

A 4 > 1(.o2 C 2 
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is satisfied, then the solution can be written 

R3 9A 2 1/81A 4 9 C 2 ]  1/2 
= -rig + \ co4 ~ ] sin (o)t + 3) (3 = const.) (3.3) 

and this describes non-singular oscillations. 
N o w  let us consider the case in which k = 1, A = 0, and the universe 

contains only radiation, so that  

87rp 2B 
3 = R - q  (B = const. > 0) (3.4) 

Equat ion (2.10) now takes the form 

~ 2  C 2 2B 1 
_R + - (3.5)  

Let us assume that  
B > I C l  

I f  one now takes as a new variable z = R 2 - B, the solution can be written 

f {  z + B ,,2 l b2_  z2 ] dz = 2t + const. (3.6) 

where 

Let us now write 
b 2 = B 2 _ C 2 

z = b s i n ( 2 0  + 2)  (3.7) 

Then equat ion (3.6) goes over into 

0 
(B + b) In f (1 - k 2 sin 2 0) 1/2 dO = t + const. (3.8) 

0 

with 
2b 

k 2 = - - < l  
B + b  

so that  one has 

E(k, O) = (B + b) -1/2 (t + V) (V = const.) (3.9) 

where E(k, O) is one of  the s tandard elliptic integrals (Jahnke et al., 1960). 
We see f rom equat ion (3.5) or (3.7) that  the min imum and maximum 

values of  R are 
R1 = (B -- b) 1/2, R2 = (B + b) 1/2 (3.10) 

For  any choice of  the function p(R) that  gives a reasonably good approxi- 
mat ion to the mean density o f  matter  and radiation in the universe, one 
can expect that  the solution of  equation (2.10) will require numerical 
integration. 
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4. FieM Equations and Scalar FieM 

The Einstein field equations, including the cosmological term, have the 
form 

R ~  - �89 R + A g ~  = -87rT~ (4.1) 

where, for a fluid characterised by a proper density p, a pressure p and a 
velocity u a = dxa/ds, 

T ~ = (p + p )  u ~ u v - g~'~p (4.2) 

In the case of the homogeneous isotropic model of the universe, since the 
coordinate system used in equation (2.1) is co-moving, one has 

u 4 = u4 = 1, u k = Uk = 0 (k = 1,2, 3) (4.3) 

and the field equations reduce to equations (2.3) and (2.4), as previously 
noted. 

The question now arises: how should the above equations be modified 
in order to include the cosmic field which was introduced for the purpose 
of obtaining an oscillatory behaviour for the universe ? 

We have seen that formally we can describe the cosmic field by means of 
the quantities pc andpc, withpc = pc. If  these quantities referred to a material 
medium having a velocity u a, we could substitute them into equation (4.2) 
to get a corresponding tensor T~ v, which could then be added to the energy- 
momentum density tensor of matter and radiation appearing on the right- 
hand side of equation (4.1). However, we are dealing here with the properties 
of space, and not of a material medium, and this presents us with a difficulty. 

In the case of a homogeneous isotropic universe, there exists a preferred 
frame of reference, the co-moving coordinate system, with a preferred 
time, often called the cosmic time, given by a clock at rest in this reference 
frame. Let us refer to this as the fundamental system and let us denote it by 
So. Thus the line element of equation (2.1) refers to So. Now one can show 
(Rosen, 1969a, b) that an observer in a laboratory which is moving freely 
through space can, in principle, determine his motion relative to So by 
means of mechanical or optical experiments performed inside the laboratory. 
Thus one has a somewhat paradoxical situation: although one is working 
in the framework of the general theory of relativity, one encounters concepts 
quite similar to those of absolute space, time and motion in classical 
physics, concepts which one would tend to regard as being in disagreement 
with the basic ideas of general relativity. This suggests that, if the homo- 
geneous isotropic model represents a reasonable approximation to the real 
universe, then the foundations of the general relativity theory need further 
investigation and, perhaps, revision. 

Let us go back to the velocity vector u a which, in So, satisfies equations 
(4.3). This is, of course, a time-like vector, and one readily verifies that in 
So, and hence in every coordinate system, it satisfies the following relations: 

ua u a = 1 (4.4) 

ua;~ u" = 0 (4.5) 
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and 
ua;~ - u,;a -= ua,~ - u,,a = 0 (4.6) 

where a c o m m a  denotes an ordinary partial  derivative and a semicolon a 
covar iant  derivative. These relations will all be satisfied if one writes 

where ~b is a scalar, such that  

In So one obviously has 

H A = @,a (4.7) 

(4.8) 

(4.9) ~b = t + const. 

so that  ~b can be regarded as describing the cosmic time. 
Let  us now put  aside the definition of  u a as the mat ter  velocity vector,  

and let us consider u a simply as a vector  determining a preferred direction 
in space-time. In  a given coordinate  system the components  of  this vector 
are to be obtained by a vector  t ransformat ion  f rom the components  in So 
given by equat ions (4.3). The  assumpt ion  of  the existence of  such a vector  
appears  to be at  variance with the foundat ions  of  general relativity. Never-  
theless it is justified in the case of  the homogeneous  isotropic universe 
because of  the existence of  a preferred system, the fundamenta l  system So. 
One might  think of  this vector  as point ing in the 'direction of  flow' of  the 
cosmic time. 

I f  we write 

42 (4.10) 
Pc = P c  = -  87r 

where 4 is a scalar then, corresponding to equat ion (4.2), we can take 
formal ly  

8~rT2 ~ = 42(g "v - 2u u u ~) (4.11) 

which should be subtracted f rom the r ight-hand member  of  equat ion (4.1) 
to describe the effect of  the cosmic field. This field equat ion can now be 
writ ten in the fo rm 

1 Ruv - ~guv R + Ag~,~ + 42(glav - 2u, u,) = -87rT,  v (4.12) 

Since T ~ has zero divergence, it follows that  we must  also have 

[42(g "~ - 2u" u~)];~ = 0 (4.13) 

This equation,  which determines 4, can be writ ten 

4,~(g u~ - 2u u u v) - q~u u u~;~ = 0 (4.14) 

Mult iplying by u m one gets 
(4u~);v = 0 (4.15) 

so tha t  equat ion (4.14) can be put  into the fo rm 

4,t~ = ut, 4,~ uV = - 4 u .  u~;~ (4.16) 
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In the co-moving system one sees that u~;~ = 3 R / R  and that ~ = q~(t), 
so that equation (4.16) reduces to 

3k 
= - ~ - ~  (4.17) 

Hence one has 
~bR 3 = const. (4.18) 

and pc, as given by equation (4.10), has the same form as that obtained 
previously. 

Having found the solution for the scalar q~ in So, we know that it will 
be the solution in every other system. However, up to this point we have 
been considering the case of the homogeneous isotropic universe, and the 
question arises whether one can generalise the discussion to the case in 
which the space is inhomogeneous as, for example, in the vicinity of a star. 

One can expect that in the general case it will not be possible for the 
vector u a to satisfy all the conditions imposed by equations (4.4)-(4.6). 
Let us therefore assume only that u a is a normalized time-like vector, i.e., 
that it satisfies equation (4.4). One can now define a vector N ,  by the relation 

N ~ = ~u ~ (4.19) 
so that 

N~ N ~ = ~z > 0 (4.20) 

and one can express T~ v in terms of it, 

8 r r T ~  v = N ~  N~'  g ~ '  - 2 N  ~' N ~* (4.21) 

Setting Tc~;v equal to zero gives the equation 

(N=; u - N t , ; : , ) N : '  = Nt~N:';~,  (4.22) 

Multiplying by N u, one gets 
N~';~, = 0 (4.23) 

so that equation (4.22) becomes 

(Na~ - Nt,;a)N a -- 0 (4.24) 

What is required therefore is a vector N ,  satisfying equations (4.23) and 
(4.24). 

One can satisfy equation (4.24) by setting 

N~;, - N,,;a = 0 (4.25) 

so that the solution is then given by 

N~ = X,, (4.26) 

where X is a scalar which, by equation (4.23), satisfies the D'Alembert 
equation 

X;~ = 0 (4.27) 
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Here a line under an index indicates that it is to be raised by means of g"~. 
One now has 

8rrT(c)~ = X,~ X,_~ g~  - 2X,~ X,~ (4.28) 

We see that the scalar X is essentially a special case of the C-field used by 
Hoyle & Narlikar (1964) in their 'continuous creation' cosmology. Indeed, 
they showed that, in the special case in which matter is conserved, the 
C-field leads to the singularity-free behaviour described by equation (2.10). 
In the present discussion it is, of  course, taken for granted that the matter 
is conserved. 

One can expect that equation (4.24) will have more general solutions than 
those satisfying equations (4.25) and (4.26). However, it may be that the 
latter are sufficiently general for the present purpose. It is rather pleasing 
to have the cosmic field described by a scalar function X, the gradient of 
which can be considered as defining the direction of flow of cosmic time. 

Making use of equation (4.28) we can now write the field equations in the 
form 

R,~ - �89 R + Agu~ + X,~ x,~g~ - 2X,, X,~ = -87rTu~ (4.29) 

where X satisfies equation (4.27). Far from the inhomogeneity, where the 
picture given by the homogeneous isotropic model is valid, if we are 
working in the fundamental system So, the appropriate solution of equation 
(4.27) must have the form 

t 

f dt ( K =  > 0) (4.30) X= X(t)= K const. 

The solution of equation (4.27) must therefore be chosen so as to go over 
to this form at a large distance from the inhomogeneity. 

Having found X, one can then write 

q~2 = X,, X,~_ (4.31) 

I 
ua = ~ x,a (4.32) 

and 
1 

pc = - U ~  x,.  x,~_ (4.33) 

In the homogeneous region, where X is given by equation (4.30), in the 
system So, one obtains agreement with equation (2.9) provided one chooses 
K so that 

K 2 = 3C 2 (4.44) 

In conclusion, it should be remarked that we have arrived at the scalar X 
on the basis of cosmological considerations, regarding it as being associated 
with the properties of space-time. It is therefore natural to suppose that 
there is no direct interaction between this scalar field and matter, just as 
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in the case of  the cosmologica l  term, for  example.  In  this respect  the X field 
differs f rom the scalar  field o f  Dicke  (1962). I t  is possible,  of  course,  tha t  
the present  s t andpo in t  m a y  have to be a b a n d o n e d  in the future. 
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